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There are several benefits in using medium-to-high voltage transmission electron microscopy (TEM) to 
characterize materials.  These include better spatial resolution and higher penetration power, which 
allows thicker specimens to be observed and thereby retaining their bulk nature.  With the 
implementation of aberration correctors in TEMs and increasing interest in nanomaterials, the field of 
low-voltage, aberration-corrected TEM is rapidly gaining importance.  In this talk, we will highlight a 
few examples in which the use of lower voltages is important when studying nanomaterials using 
aberration-corrected TEM. 
 
Since their discovery in 1991 carbon nanotubes (CNTs) [1] have found an increasing number of 
applications, most notably as field emission electron sources in X-ray tubes for medical applications [2, 
3].  Under less stringent vacuum conditions, the field emission current and lifetimes of CNTs are found 
to decrease [4, 5].  To study the underlying mechanism of carbon nanotube oxidation, we observed 
structural changes in CNTs as they were oxidized in situ using an aberration-corrected environmental 
TEM (ETEM).  An 80 kV incident electron beam energy (which is below the threshold energy for 
knock-on damage in single-walled carbon nanotubes [6]) was utilized in this study.  Contrary to earlier 
reports that CNT oxidation initiates at the end of the tube and proceeds along its length, our findings 
show that only the outside graphene layer is being removed and, on occasion, the interior inner wall is 
oxidized, presumably due to oxygen infiltrating into the hollow nanotube through an open end or 
breaks in the tube [7].  The CNT caps are not observed to oxidize preferentially [8]. 
 
The study of nanomaterials using TEM typically requires the use of thin supporting substrates such as 
amorphous carbon or SiO2. At higher accelerating voltages (200 kV and above), Cherenkov radiation 
alters the low-loss electron energy-loss (EEL) spectrum of SiO2, but this phenomenon disappears 
when the voltage is reduced to 80 kV. Using STEM-EELS with an 80 kV electron beam energy, we 
show band gap variations within dome-shaped PbS quantum dots that have been dispersed on a SiO2 
support film [9].  We also report the first direct measurement of hydrogen absorption and desorption in 
individual palladium nanocrystals on a SiO2 substrate using in situ environmental STEM-EELS at 80 
kV [10]. 
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